- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Liu, Jiakang (2)
-
Yang, Chaowei (2)
-
Cain, Jacob (1)
-
Chew, Aaron (1)
-
Duffy, Daniel Q (1)
-
Hasheminassab, Sina (1)
-
Horowitz, Melanie Alfonzo (1)
-
Huang, Thomas (1)
-
Jia, Xiaoguo (1)
-
LaGarde, Shyra (1)
-
Lan, Hai (1)
-
Li, Yun (1)
-
Liu, Qian (1)
-
Llewellyn, Grace (1)
-
Marlis, Kevin (1)
-
Phyo, Wai (1)
-
Pourhomayoun, Mohammad (1)
-
Roberts, Joe (1)
-
Sha, Dexuan (1)
-
Smith, Seren (1)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Accurate air pollution monitoring is critical to understand and mitigate the impacts of air pollution on human health and ecosystems. Due to the limited number and geographical coverage of advanced, highly accurate sensors monitoring air pollutants, many low-cost and low-accuracy sensors have been deployed. Calibrating low-cost sensors is essential to fill the geographical gap in sensor coverage. We systematically examined how different machine learning (ML) models and open-source packages could help improve the accuracy of particulate matter (PM) 2.5 data collected by Purple Air sensors. Eleven ML models and five packages were examined. This systematic study found that both models and packages impacted accuracy, while the random training/testing split ratio (e.g., 80/20 vs. 70/30) had minimal impact (0.745% difference for R2). Long Short-Term Memory (LSTM) models trained in RStudio and TensorFlow excelled, with high R2 scores of 0.856 and 0.857 and low Root Mean Squared Errors (RMSEs) of 4.25 µg/m3 and 4.26 µg/m3, respectively. However, LSTM models may be too slow (1.5 h) or computation-intensive for applications with fast response requirements. Tree-boosted models including XGBoost (0.7612, 5.377 µg/m3) in RStudio and Random Forest (RF) (0.7632, 5.366 µg/m3) in TensorFlow offered good performance with shorter training times (<1 min) and may be suitable for such applications. These findings suggest that AI/ML models, particularly LSTM models, can effectively calibrate low-cost sensors to produce precise, localized air quality data. This research is among the most comprehensive studies on AI/ML for air pollutant calibration. We also discussed limitations, applicability to other sensors, and the explanations for good model performances. This research can be adapted to enhance air quality monitoring for public health risk assessments, support broader environmental health initiatives, and inform policy decisions.more » « lessFree, publicly-accessible full text available February 1, 2026
-
Li, Yun; Horowitz, Melanie Alfonzo; Liu, Jiakang; Chew, Aaron; Lan, Hai; Liu, Qian; Sha, Dexuan; Yang, Chaowei (, Frontiers in Public Health)null (Ed.)
An official website of the United States government
